Открытая система отопления своими руками

Подключение батареи на магистральный трубопровод

На уровень теплоотдачи радиаторов влияет способ их подключения к магистрали:

  • Диагональный (перекрестный). Этот вариант демонстрирует наибольшую эффективность. Дает возможность максимально прогревать радиаторы по площади, практически исключая тепловые потери. В этом случае подающая труба подводятся на верхний радиаторный патрубок, а обратная коммутируется с нижним патрубком (он находится на противоположной стороне устройства). Диагональное подключение обязательно для многосекционных радиаторов.
  • Боковой (односторонний). Обеспечивает равномерный прогрев всех секций батареи. В такой схеме подающий и отводящий трубопроводы расположены с одного направления. Боковое соединение наиболее популярно при организации отопления с верхней разводкой.
  • Нижний. Наименее эффективный способ соединения. Несмотря на это, его нередко используют, когда магистральная труба скрывается под полом. Подводящую и отводящую трубу коммутируют к нижним отводам на разных сторонах батареи.

Открытые системы теплоснабжения

В открытой системе вода подается постоянно из теплоцентрали и это компенсирует ее расход даже при условии полного разбора. В советское время по такому принципу функционировало примерно 50% теплосетей, что объяснялось экономичностью и минимизацией затрат на обогрев и ГВС.

Но открытая система теплоснабжения имеет ряд недостатков. Чистота воды в трубопроводах не соответствует требованиям санитарно-гигиенических норм. Поскольку жидкость перемещается по трубам значительной протяженности, она становится другого цвета и приобретает неприятные запахи. Часто при взятии проб воды работниками санэпидемстанций из таких трубопроводов в ней обнаруживают вредоносные бактерии.

Открытая схема теплоснабжения функционирует на основе законов термодинамики: горячая вода поднимается вверх, благодаря чему на выходе котла создается высокое давление, а на входе в теплогенератор — небольшое разряжение. Далее жидкость направляется из зоны повышенного давления в зону более низкого и в результате осуществляется естественная циркуляция теплоносителя.

Будучи в нагретом состоянии, вода имеет свойство увеличиваться в объеме, поэтому для данного типа отопительной системы требуется наличие открытого расширительного бака, такого как на фото – это устройство абсолютно негерметично и напрямую соединяется с атмосферой. Поэтому такое обеспечение теплом получило соответствующее название — открытая водяная система теплоснабжения.

В открытом типе вода нагревается до 65 градусов и потом подается к кранам водоразбора, откуда поступает к потребителям. Подобный вариант теплоснабжения позволяет пользоваться дешевыми смесителями вместо дорого теплообменного оборудования. Так как разбор подогретой воды неравномерен, по этой причине линии подачи конечному потребителю рассчитывают с учетом максимального потребления.

Расширительный бак для закрытой системы отопления

Расширительный бак для предназначен для компенсации изменения объема теплоносителя в зависимости от температуры. В закрытых системах отопления это герметичная емкость, разделенная эластичной мембраной на две части. В верхней части находится воздух или инертный газ (в дорогих моделях). Пока температура теплоносителя невысока, бачок остается пустым, мембрана расправлена (на рисунке картинка справа).

Принцип работы мембранного расширительного бачка

При нагревании теплоноситель увеличивается в объеме, его излишек поднимается в бачок, отодвигая мембрану и сжимая закачанный в верхнюю часть газ (на картинке слева). На манометре это отображается как повышение давления и может служить сигналом для уменьшения интенсивности горения. В некоторых моделях есть предохранительный клапан, который при достижении порогового значения давления сбрасывает излишек воздуха/газа.

По мере остывания теплоносителя, давление в верхней части бачка выдавливает теплоноситель из емкости в систему, показатели манометра приходят в норму. Вот и весь принцип работы расширительного бачка мембранного типа. Кстати, мембраны бывают двух видов — тарельчатые и грушевидной формы. Форма мембраны на принцип работы никак не влияет.

Виды мембран для расширительных бачков в системах закрытого типа

Расчет объема

Согласно общепринятым нормам объем расширительного бака должен составлять 10% от общего объема теплоносителя. Это значит, что вы должны посчитать, сколько воды поместится в трубах и радиаторах вашей системы (есть в технических данных радиаторов, а объем труб можно посчитать). 1/10 часть от этой цифры и будет объемом необходимого расширительного бака. Но эта цифра справедлива только если теплоноситель — вода. Если используется незамерзающая жидкость, размера бака увеличивается на 50% от рассчитанного объема.

Вот, пример расчета объема мембранного бака для закрытой системы отопления:

  • объем системы отопления составляет 28 литров;
  • размер расширительного бака для системы, заполненной водой 2,8 литра;
  • размер мембранного бака для системы с незамерзающей жидкостью — 2,8 + 0,5*2,8 = 4,2 литра.

При покупке выбираете ближайший больший объем. Меньший не берите — лучше иметь небольшой запас.

На что обратить внимание при покупке

В магазинах есть бачки красного и синего цвета. Для отопления подходят бачки красного цвета. Синие конструктивно такие же, только они предназначены для холодной воды и высоких температур не переносят.

На что еще обратить внимание? Есть два вида бачков — со сменной мембраной (называются они еще фланцевыми) и с незаменяемой. Второй вариант дешевле, причем значительно, но если повредится мембрана, покупать придется все целиком

Во фланцевых моделях покупают только мембрану.

Место для установки расширительного бака мембранного типа

Обычно ставят расширительный бачок на обратном трубопроводе перед циркуляционным насосом (если смотреть по ходу движения теплоносителя). В трубопровод устанавливается тройник, к одной его части подсоединяется небольшой отрезок трубы, а к ней, через фитинги, подключается расширитель. Размещать его лучше на некотором расстоянии от насоса, чтобы не создавались перепады давления. Важный момент — участок обвязки мембранного бака должен быть прямолинейным.

Схема установки расширительного бака для отопления мембранного типа

После тройника ставят шаровый кран. Он необходим чтобы была возможность снять бачок без слива еплоносителя. Саму емкость удобнее соединять при помощи американки (накидной гайки). Это снова-таки облегчает монтаж/демонтаж.

Пустое устройство весит не так много, но заполненное водой имеет солидную массу. Потому необходимо предусмотреть способ закрепления на стене или дополнительные опоры.

Какие бывают виды отопления

Существуют различные классификации отопления:

  • По типу источника тепла: газовое, угольное, мазутное, дровяное, солнечное, геотермальное, торфяное, пеллетное, электрическое.
  • По виду теплоносителя — водяное, жидкостное, воздушное, паровое, комбинированное.
  • По типу  приборов: лучистое, конвективное, конвективно-лучистое.
  • По способу циркуляции теплоносителя: естественное и искусственное.
  • По расположению источника тепла: центральное и местное.
  • По виду режима работы: постоянное, периодическое, аккумуляционное.

На практике все эти системы в изолированном виде не существуют, а так или иначе комбинируются между собой.

2 Требования к обустройству и эксплуатации

По конструкционным особенностям двухтрубные устройства немного сложнее и дороже. Но это оправдывается некоторыми плюсами, перекрывающими недостатки однотрубного варианта. Вода прогревается до равномерной температуры, а затем одновременно поступает ко всем приборам. В свою очередь, охлажденный теплоноситель возвращается с помощью обратной трубы, а не проходит через следующий радиатор.

Обустраивая открытую систему отопления с насосом и расширительным баком, необходимо выделить несколько правил и требований к предстоящей работе. Они заключаются в следующем:

  1. 1. На этапе монтажа котельную установку нужно закрепить в самом низком месте магистрали, а расширительный бак — в самом высоком.
  2. 2. В идеале котел нужно расположить в чердачном помещении. В холодный период резервуар и подающий стояк нуждаются в утеплении.
  3. 3. Прокладывая магистраль, следует избегать большого количества поворотов, соединительных и фасонных элементов.
  4. 4. В гравитационных системах циркуляция теплоносителя осуществляется с невысокой скоростью — не больше 0,1−0,3 м в секунду. Из-за этого прогревать воду нужно постепенно, избегая кипения. В противном случае эксплуатационный срок труб существенно снизится.
  5. 5. Если в холодную пору года отопительная система не эксплуатируется, теплоноситель лучше слить. Такой подход позволит предотвратить преждевременное повреждение труб, радиаторов и котла.
  6. 6. Объем теплоносителя в расширительном баке нужно контролировать и восстанавливать по мере исчерпания жидкости. Если этого не делать, повысится риск образования воздушных пробок, которые снизят эффективность работы радиаторов.
  7. 7. Оптимальным вариантом теплоносителя является вода. Дело в том, что антифриз содержит в своем составе токсические вещества, и при взаимодействии с атмосферой они могут нанести вред человеческому здоровью. Такой тип жидкости может использоваться, когда нет возможности осуществлять слив теплоносителя в холодный период.

Актуальные нормы проектирования регламентируются СНиП под номером 2.04.01−85. В контурах с гравитационной циркуляцией жидкости диаметр сечения трубы существенно больше, чем в системах с насосом.

Гравитационная циркуляция

В системах, где теплоноситель циркулирует естественным образом, нет механизмов, способствующих перемещению жидкости. Процесс осуществляется благодаря расширению нагретого теплоносителя. Чтобы схема такого типа эффективно работала, устанавливают разгонный стояк высотой 3,5 метра и более.

Магистраль в системе отопления с естественной циркуляцией жидкости имеет некоторые ограничения по длине, в частности она не должна превышать 30 метров. Следовательно, такое теплоснабжение может использоваться в небольших строениях, оптимальным вариантом в этом случае считаются дома, площадь которых  не превышает 60 м2. Высота дома и количество этажей также имеют большое значение при монтаже разгонного стояка. Следует учитывать еще один фактор, в системе отопления естественного циркуляционного типа теплоноситель должен нагреваться до определенной температуры, при низкотемпературном режиме необходимое давление не создается.

Схема с гравитационным движением жидкости имеет определенные возможности:

  • Сочетание с системами теплого пола. В этом случае на водяном контуре, ведущем к нагревательным элементам, устанавливают циркуляционный насос. В остальном функционирование осуществляется в обычном режиме, не прекращаясь даже при отсутствии электроснабжения.
  • Работа с бойлером. Установка прибора осуществляется в верхней части системы, но на более низком уровне, чем расположен расширительный бак. В некоторых случаях на бойлер устанавливают насос, чтобы он работал в бесперебойном режиме. Однако стоит понимать, что в такой ситуации система становится принудительной, что делает необходимым монтаж обратного клапана для предотвращения рециркуляции жидкости.

Классификация систем теплоснабжения МКД по расположению источника тепла

По месту расположения источника тепловой энергии системы теплоснабжения делятся на

· Централизованные;

· Местные децентрализованные;

· Индивидуальные децентрализованные.

Централизованные системы теплоснабжения

В подобных системах теплоснабжения источником тепла могут быть:

· ТЭЦ (теплоэнергоцентрали);

· Котельные, работающие для одного или нескольких зданий.

Рис. 1. Принципиальная схема централизованной системы теплоснабжения

Контроль потребленной тепловой энергии в централизованной системе теплоснабжения производится с помощью узла учёта, который установлен на границе балансовой принадлежности тепловой сети. Часто для МКД граница расположена на вводе сети в дом.

Централизованная система теплоснабжения включает в себя:

· Трубопроводы отопления и ГВС (полимерные или металлические);

· Запорную и запорно-регулирующую арматуры;

· Отопительные приборы: радиаторы, конвекторы, регистры;

· Теплоизоляцию трубопроводов;

· Фильтры, грязевики, манометры, термометры;

· Узлы управления системой отопления и ГВС;

· Теплообменное оборудование;

· Насосное оборудование;

· Расширительные баки необходимого объема;

· Предохранительные клапаны;

· Различные датчики;

· Узел учета тепловой энергии;

· Систему подпитки и очистки воды;

· Щиты автоматики и электрические щиты.

Местные децентрализованные системы теплоснабжения

В данном типе систем теплоснабжение каждого здания происходит от отдельного источника – котельной.

Рис. 2. Принципиальная схема местной децентрализованная система теплоснабжения

В местной децентрализованной системе теплоснабжения узел учета на вводе в дом не устанавливается. Вместо него устанавливают узел учета потребленного газа на весь дом целиком.

Такая система состоит из двух частей:

· Инженерной системы здания (систем отопления и ГВС);

· Оборудования в котельной.

В состав инженерной системы дома входят:

· Трубопроводы отопления и горячего водоснабжения;

· Запорная и запорно-регулирующая арматуры;

· Отопительные приборы: радиаторы, конвекторы, регистры;

· Теплоизоляция трубопроводов;

· Фильтры, гидрострелки, грязевики, манометры, термометры;

· Узлы управления системой отопления и ГВС;

· Теплообменное оборудование;

· Насосное оборудование.

В состав оборудования котельной входят:

· Котел или группа котлов;

· Дымоход;

· Насосное оборудование;

· Расширительные баки необходимого объема;

· Предохранительные клапаны;

· Контрольно-измерительные приборы: манометры, термометры;

· Различные датчики;

· Узел учета газа;

· Система подпитки и очистки воды;

· Щиты автоматики и электрические щиты;

· Газовые трубопроводы и оборудование;

· Системы сигнализации и защиты.

Индивидуальные децентрализованные системы теплоснабжения

В индивидуальных децентрализованных системах теплоснабжения помещения или группа помещений (квартир) снабжаются теплом от отдельного источника – чаще всего котла. При этом узел учета потребленного газа устанавливается в каждой квартире.

Рис. 3. Принципиальная схема индивидуальной децентрализованной системы теплоснабжения

Индивидуальная децентрализованная система теплоснабжения состоит из:

· Настенного котла (газового или электрического);

· Полимерных (из полипропилена или металлопластика) или стальных трубопроводов;

· Отопительных приборов (радиаторов, конвекторов, регистров) с запорно-регулирующей арматурой;

· Теплоизоляции.

Как правильно монтировать отопление

Чтобы готовая система отопления с естественным типом циркуляции функционировала правильно и эффективно, при ее монтаже важно придерживаться некоторых правил.

В целом схема установки выглядит так:

  • Радиаторы отопления необходимо установить под окнами, желательно на одном уровне и с соблюдением необходимых отступов.
  • Далее устанавливают теплогенератор, то есть выбранный котел.
  • Монтируют расширительный бак.
  • Выполняют разводку труб и стыкуют зафиксированные ранее элементы в единую систему.
  • Отопительный контур наполняют водой и выполняют предварительную проверку герметичности соединений.
  • Заключительный этап состоит в запуске отопительного котла. Если все работает правильно, значит, в доме будет тепло.

Обратите внимание на некоторые нюансы:

  1. Котел должен быть расположен в самой нижней точке системы.
  2. Монтаж труб необходимо выполнять с уклоном в сторону обратного потока.
  3. Поворотов в трубопроводе должно быть как можно меньше.
  4. Для повышения эффективности отопления необходимы трубы с большим диаметром.

Надеемся, данная статья будет для вас полезной, и вы сможете самостоятельно смонтировать систему отопления без циркуляционного насоса в вашем загородном доме.

Оптимальная скорость работы насоса

Задача системы отопления с насосной циркуляцией заключается в надежной доставке теплоносителя ко всем потребителям системы, включая самые дальние радиаторы. Чтобы это происходило эффективно, насос должен создавать необходимый для этого напор: его рассчитывают проектировщики, учитывая гидравлическое сопротивление труб. Чаще всего бытовые насосы имеют 3-7 скорости вращения ротора, что позволяет увеличивать или уменьшать производительность работы.

Наиболее простой способ подобрать оптимальную скорость циркуляционного насоса:

  1. Отопительную систему нужно вывести в рабочий режим.
  2. Измерить температуру поверхности трубы перед и после котла при помощи лазерного поверхностного термометра (пирометра).
  3. При разнице температур более 20 градусов скорость вращения ротора нужно увеличить.
  4. Если разница меньше 10 градусов, скорость потока нужно уменьшить. Оптимальная разбежность уровня нагрева подачи и обратки – примерно 15 градусов.

Пирометр можно не применять, когда подающая и обратная труба оснащены термометрами. Если с помощью регулировок не удается достичь требуемой разницы температур в 10-20 градусов, это говорит о низкой эффективности системы. Причиной чаще всего бывает ошибка в подборе циркуляционного аппарата. Слишком низкая температура воды в обратке провоцирует увеличение нагрузки на котел и увеличение расхода энергоносителей. Очень горячая вода циркулирует слишком быстро, не успевая передать тепло обогревателям.

Комплектация системы

Отопление открытого типа в частном доме требует установки котла, который работает на твердом топливе или мазуте. Дело в том, что такой тип отопления характеризуется периодическим образованием воздушных пробок, которые могут стать причиной аварии при использовании электрических и газовых котлов.

Рассчитать мощность котла отопления можно по стандартной схеме, согласно которой для обогрева 10 м2 площади помещения требуется 1 кВт энергии плюс 10-30% в зависимости от качества теплоизоляции.

В качестве материала для расширительного резервуара не стоит использовать полимеры, оптимальным вариантом в этом случае будет сталь. Объем бака зависит от площади отапливаемого помещения, к примеру, в системе теплоснабжения небольшого строения высотой в один этаж может использоваться расширительный бачок на 8-15 литров.

Что касается труб для схемы системы отопления с циркуляционным насосом, то в этом случае могут использоваться следующие материалы:

  • Сталь. Для такого трубопровода характерна высокая теплопроводность и устойчивость к высокому давлению. Однако монтаж имеет некоторые сложности и требует использования сварочного оборудования.
  • Полипропилен. Такая система отличается не сложным монтажом, прочностью и герметичностью, она способна выдерживать температурные колебания. Полипропиленовые трубы характеризуются безупречной эксплуатацией на протяжении четверти века.
  • Металлопластик. Трубы из этого материала устойчивы к коррозии, на их внутренних стенках не образуются отложения, препятствующие естественному движению теплоносителя. Однако стоимость такой системы достаточно высокая, а срок ее эксплуатации составляет всего 15 лет.
  • Медь. Трубопровод из меди считается самым дорогим, но он отлично переносит высокую температуру, до +500 градусов, и характеризуется максимальной теплоотдачей.

Как выбрать насос для отопления

Лучше всего подходят для установки специальные малошумные циркуляционные насосы центробежного типа с прямыми лопастями. Они не создают избыточно большого давления, а проталкивают теплоноситель, ускоряя его движение (рабочее давление индивидуальной системы отопления с принудительной циркуляцией 1-1,5атм, максимальное – 2атм). Некоторые модели насосов имеют встроенный электропривод. Такие устройства можно устанавливать прямо в трубу, их называют еще «мокрыми», а есть устройства «сухого» типа. Отличаются они только правилами монтажа.

При установке любого типа циркуляционного насоса желательна установка с байпасом и двумя шаровыми кранами, которые позволяют снять насос для ремонта/замены без останова системы.

Подключать насос лучше с байпасом — для возможности его ремонта/замены без разрушения системы

Установка циркуляционного насоса позволяет регулировать скорость продвижения теплоносителя по трубам. Чем активнее движется теплоноситель, тем больше тепла он разносит, а значит, помещение нагревается быстрее. После того, как заданная температура достигнута (отслеживается или степень нагрева теплоносителя или воздуха в помещении в зависимости от возможностей котла и/или настроек), задача меняется – требуется поддерживать заданную температуру и скорость потока уменьшается.

Для системы отопления с принудительной циркуляцией недостаточно определиться с типом насоса

Важно рассчитать его производительность. Для этого, прежде всего, нужно знать теплопотери помещений/зданий, которые будут отапливаться. Они определяются исходя из потерь в самую холодную неделю

В России они нормированы и установлены коммунальными службами. Они рекомендуют использовать следующие величины:

Они определяются исходя из потерь в самую холодную неделю. В России они нормированы и установлены коммунальными службами. Они рекомендуют использовать следующие величины:

  • для одно- и двухэтажных домов потери при самой низкой сезонной температуре -25 о С составляют 173Вт/м 2. при -30 о С потери 177 Вт/м 2 ;
  • многоэтажные дома теряют от 97Вт/м 2 до 101Вт/м 2 .

Исходя из определенных теплопотерь (обозначаются Q) можно найти мощность насоса по формуле:

c – удельная теплоемкость теплоносителя (1,16 для воды или другое значение из сопроводительных документов к антифризу);

Dt – разница температур между подачей и обраткой. Этот параметр зависит от типа системы и составляет: 20 о С для обычных систем, 10 о С для низкотемпературных и 5 о С для систем теплого пола.

Полученную величину нужно перевести в производительность, для чего нужно разделить на плотность теплоносителя при рабочей температуре.

В принципе, можно при выборе мощности насоса для принудительной циркуляции отопления руководствоваться усредненными нормами:

  • с системах, обогревающих площадь до 250м 2. используют агрегаты производительностью 3,5м 3 /ч и создаваемым напором 0,4атм;
  • на площадь от 250м 2 до 350м 2 требуется мощность 4-4,5м 3 /ч и давлением 0,6атм;
  • в системы обогрева площади от 350м2 до 800м2 устанавливают насосы производительностью 11м 3 /ч и давлением в 0,8атм.

Но учесть нужно, что чем хуже утеплен дом, тем большие мощности оборудования (котла и насоса) могут потребоваться и наоборот – в хорошо утепленном доме могут потребоваться половинные от указанных величины. Эти данные – средние. То же самое можно сказать относительно создаваемого насосом давления: чем уже трубы и более шероховатая их внутренняя поверхность (выше гидравлическое сопротивление системы), тем выше должно быть давление. Полный расчет – сложный и муторный процесс, в котором учитывается множество параметров:

Мощность котла зависит от площади отапливаемого помещения и потерь тепла

  • сопротивление труб и фитингов (о том, как выбрать диаметр труб отопления читайте тут );
  • длина трубопровода и плотность теплоносителя;
  • количество, площадь и вид окон и дверей;
  • материал, из которого сделаны стены, их утепление;
  • толщина стен и утепления;
  • наличие/отсутствие подвала, цоколя, чердака а также степень их утепления;
  • тип кровли, состав кровельного пирога и т.д.

Вообще, теплотехнический расчет – один из самых сложных в области. Так что если хотите знать точно, какой мощности вам нужен насос в системе, закажите расчет у специалиста. Если нет – подбирайте основываясь на усредненных данных, корректируя их в ту или другую сторону в зависимости от вашей ситуации. Только нужно учесть, что при недостаточно высокой скорости движения теплоносителя система сильно шумит. Потому в данном случае лучше взять более мощное устройство — расход электроэнергии небольшой, да и система будет более эффективной.

Как работает тупиковая отопительная система

Тупиковая схема – это помещений, в котором, как видно из рисунка выше, горячий теплоноситель подается к каждому радиатору по одной трубе (подача), а выходит из радиаторов и поступает к котлу по другой трубе (обратка). Причем в этой схеме движение теплоносителя по подающей и обратной трубах происходит в противоположном направлении, тогда как в других (не однотрубных) схемах жидкость движется в одном направлении. Это – очень распространенный вариант подключения нагревательных приборов, и не только радиаторов – это могут быть чугунные или биметаллические батареи, или самодельные регистры.

Хотя и можно реализовать по тупиковой схеме, но это решение непопулярно в силу своей невысокой эффективности отдачи тепла и сложности исполнения. Реализация тупиковой однотрубной схемы показана ниже – если дом рассчитан на 2 или три этажа, то, кроме стандартной группы безопасности, придется делать разводку стояков, и на каждый радиатор устанавливать воздухоотводчик или кран Маевского. Это – схема дорогостоящая, поэтому ее нечасто принимают к исполнению.

Косвенное преимущество тупиковой схемы еще и в том, что ее можно применять как для отопления с принудительной циркуляцией теплоносителя, так и для решения с гравитационным перемещением жидкости в трубах. Для энергонезависимого отопления частного дома система с естественной циркуляцией приобретает все большую популярность, поэтому не стоит забывать и о тупиковой схеме с верхней разводкой труб в этом случае.

В любом случае, при одноконтурной или двухконтурной схеме, для тупикового варианта очевидно следующее: чем больше к трубе, тем медленнее будут прогреваться все последующие нагревательные приборы. Поэтому желательно разделить всю систему на несколько ответвлений таким образом, чтобы в каждой ветке было не больше, чем 5-6 радиаторов. Это решение актуально как для естественной, так и для принудительной схемы перемещения теплоносителя.

На практике преимущество тупиковой схемы очевидно: это простые расчеты, несложный уровень монтажа, минимальное количество запорной арматуры и фитингов, дешевизна всего проекта. Если сравнивать с такими популярными решениями, как двухтрубная система с попутным движением жидкости и с лучевой схемой (с коллектором), то в плане соблюдения законов гидравлики они явно лучше тупиковой – быстрее движется теплоноситель, нет встречного движения, радиаторы прогреваются равномерно и с одинаковой скоростью. Но часто именно экономичность тупикового варианта побеждает, особенно для отопления дома с небольшой общей отапливаемой площадью.

Горизонтальная схема с тупиковой разводкой имеет разновидность, где применяется центральная магистраль. Такую схему можно реализовать как скрытый в пол или в стену трубопровод, что нравится всем без исключения домовладельцам, так как скрытый трубопровод не требует переделки дизайна, перепланировки или изменения интерьера помещений.

При монтаже скрытого трубопровода, например, при заделке труб в бетонную стяжку пола или в штробы в стенах, трубы следует применять не стальные, а металлопластиковые без соединений или полимерные с соединением неподвижной гильзой или сваркой, чтобы не допустить возможности протечки. Единственная проблема при прокладке скрытого трубопровода – его правильный и красивый вывод из стены или из-под пола. Также следует избегать любых пересечений труб в скрытом варианте монтажа. Чтобы избежать пересечений, используют крестовину. При присоединении трубы к радиатору при помощи крестовины можно без выступа за плоскость монтажа обогнуть трубы центральной магистрали.

Также реализация тупиковой системы с центральной магистралью открывает возможности по подключению к отоплению и других схем: системы «теплый пол» или полотенцесушителей. Подключаются такие узлы пир помощи специального смесительного модуля, к состав которого входит циркуляционный насос, смесительные краны и температурные датчики. Модуль смешения делает работу подключаемых модулей независимой от главной схемы отопления, причем любое количество новых подключаемых контуров не будет влиять на работу основного контура.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector