Методики и варианты расчета свайного фундамента

Содержание:

Вычисление ординат эпюры дополнительного давления σzp,i

Сначала вычисляется верхняя ордината эпюры σzp,о непосредственно под подошвой
фундамента при z = 0:

кПа

Затем вычисляются другие
ординаты по формуле  для
различных глубин  откладываемых
от подошвы фундамента. Коэффициенты  берутся
в зависимости от отношения длины фундамента стены l к ширине фундамента b, то
есть  (принимается
по последней колонке таблицы 11 Приложения, где —
фундамент ленточный и отношения ξ=2z/b (первая колонка)). Вычисления удобно вести в табличной форме.
Для отыскания нижней границы В.С. сжимаемой толщи Hc в этой же таблице
приводятся значения 0,2 При
этом толщины элементарных слоев hi в эпюре σzp соответственно получаются 0,72 , 0,4b =
0,4·1,98=0,79м.

, кПа0,2,
кПаСлои основания

0 0,8 1,6 2,4

0 0,79 1,58 2,38

1,000 0,881 0,642 0,477

186,14 163,99 119,50 88,79

0,72 0,72 0,72 0,72

25,50

 Песок мелкой крупностью
Е=20102 кПа

3,2 4,0 4,8 5,6 6,0 6,4

3,17 3,96 4,75 5,54 5,94
6,34

0,374 0,306 0,258 0,223
0,208 0,196

69,62 56,96 48,02 41,51
36,48

0,72 0,72 0,72 0,72 0,72

 41,32 42,14

Схема закладки

Попробуем разобраться, как выполнить армирование столбчатого фундамента своими руками. Предположим, что размеры и количество материала мы определили, подготовили все необходимое для работы.

В каждый котлован под опорный столб устанавливаем четыре рифленых прута диаметром в 1 см. Если предстоит заливать опоры с круглым сечением, рекомендуется использовать шесть восьмимиллиметровых прутков.

Опорную подошву для каждого столба усиливают сварной сеточкой, изготовленной из арматуры сечением 6 – 8 мм, уложенной в два ряда, при этом толщина закраин подошвы должна составлять не менее пятнадцати сантиметров.

В отдельных случаях, если заливаются опорные элементы с переменным сечением в виде ступеней, армирование выполняется двумя и более каркасами, соединенными в единую конструкцию вязальной проволокой.

Грибовидные столбы подвергаются двойному армированию. Первый слой металлических прутьев выгибается в виде отдельных элементов в форме «L», при этом вертикальная часть равняется показателю высоту опоры, а выгнутая сторона подрезается под размер диаметра.

Заложенные в подготовленную скважину элементы корректируются таким образом, чтобы их горизонтальные части радиально расходились от центральной точки к периферии подошвы столба.

После этого в скважину монтируется обычная каркасная заготовка, выполняется бетонирование. В результате получается достаточно прочный и устойчивый к выдавливанию столб.

По аналогичной схеме монтируется каркас из арматуры при устройстве ростверка. В будущую железобетонную балку закладываются арматурные прутья сечением 1 см по два – три штуки. На угловых участках фундамента прутья загибаются минимум на двадцать сантиметров, выполняются соединения сваркой или вязальной проволокой. Таким же образом ростверковая каркасная основа связывается с прутьями опорных столбов, и после этого можно приступать к подаче бетонной смеси.

Технология армирования столбов

Арматурный каркас бетонного столба состоит из нескольких вертикальных прутков. Диаметр арматуры составляет 10-12 мм. Для армирования столбчатых фундаментов применяется только арматура класса А-III (ребристая).

Горизонтальная составляющая каркаса формируется из более тонкой гладкой монтажной арматуры диаметром 6 мм. Требования к горизонтальным элементам невысоки: в их задачу входит лишь соединение вертикальных стержней в единую конструкцию.

Длина вертикальных элементов рассчитывается таким образом, чтобы их верхние торцы выступали над поверхностью бетонной заливки на 10-20 см. Свободные концы используются в дальнейшем для привязки ростверка к столбам.

Схема армирования столбчатого фундамента:

  • рассчитывается необходимое количество арматуры;
  • отрезаются стержни необходимой длины;
  • вяжется каркас;
  • полученная конструкция опускается внутрь опалубки (на этом этапе надо следить, чтобы между досками опалубки и арматурой сохранялся зазор до 50 мм);
  • осуществляется заливка бетона.

В процессе заполнения опалубки бетонной смесью каркас необходимо периодически встряхивать. Арматура должна быть полностью очищена от грязи, в противном случае прилипание бетона к металлу будет затруднено.

Вязка арматуры

Столбчатые фундаменты обычно имеют небольшие размеры, так что для вязки арматуры будет достаточно автоматического или обычного крюка.

Схема вязки несложна:

  • отрезается кусок проволоки длиной 300 мм и складывается вдвое;
  • по диагонали крестовины арматуры заносится полученная петля и выносится к ее концам;
  • крюк продевается в проволочную петлю;
  • затем инструмент прокручивается, цепляя при этом концы проволоки.

Определение среднего вертикального давления р под подошвой условного фундамента и проверка выполнения условия р

Для вычисления р необходимо определить площадь подошвы условного
ленточного фундамента Аусл и нагрузки, передающиеся на эту площадь от
собственного веса всех элементов, входящих в объем условного фундамента, а
также и от сооружения.

а) Площадь условного ленточного фундамента:

 —
среднее значение угла внутреннего трения грунтов, залегающих в пределах рабочей
длины сваи .

 = 1,01

б)
Объемы условного фундамента, всех входящих в него конструктивных элементов и
грунта:

условного
фундамента:

ростверка:

части
стены подвала, расположенной ниже верха условного фундамента (ниже отметки пола
подвала):

части
пола подвала (справа и слева от стены подвала):

грунта:

Объем
свай не вычитается из объема . При
подсчете веса грунта в условном фундаменте . не
учитывается увеличение его удельного веса за счет уплотнения при забивке свай.

Принимается,
чт

в)
Нагрузки от собственного веса всех составных частей условного фундамента и от
сооружения:

ростверка
и всей надростверковой конструкции, то есть всей стены подвала, включая ее
часть, расположенную выше отметки DL:

Q
= QP + Qнк = 45,6 кН;

части
пола подвала ;

свай
(1,03 сваи с рабочей длиной lсв = 3,9 м, из которых 0,1 м — в водонасыщенном
грунте):

грунта
в объеме условного фундамента:

Среднее
давление р под подошвой условного фундамента:

Вычисление
расчетного сопротивления R по формуле (7) СНиП для песка мелкой крупности,
(IV слой), залегающего под подошвой условного
фундамента.

где

;

 = 1,0
;=1

 , , ;

=1

;

м3,

.

Условие
р ≤ R выполняется: 315,74 < 967,66. Расчет осадки методами,
основанными на теории линейного деформирования грунта, правомерен, поэтому
далее производится расчет осадки методом послойного суммирования.

. Расчет конечной
(стабилизированной) осадки свайного фундамента методом послойного суммирования
для внутренней стены

Как рассчитать количество винтовых свай?

Правильно выполненные расчеты при проектировании свайно-винтового фундамента – залог надежности всей строительной конструкции. Их осуществление требует знаний и опыта в сфере проектирования и строительства оснований данного типа.

Основные принципы расчета количества винтовых свай

Чтобы грамотно рассчитать количество винтовых свай, следует основываться на следующих принципах:

  1. Для возведения легких заборов не превышайте расстояние между устанавливаемыми сваями в 3-3,5 м.;
  2. Для деревянных заборов, а также заборов из профлиста расстояние не должно превышать трех метров, а при наличии нагрузки ветром – 2,5 метров;
  3. Для деревянных домов расстояние между сваями должно быть не больше 3-х м.;
  4. Для домов из пенобетона, газобетона, пеноблоков и шлакоблоков необходимо устанавливать расстояние для свай не более 2-х метров.

Для расчета количества винтовых свай необходимо:

  1. взять план первого этажа;
  2. обозначить винтовые сваи в каждом из углов фундамента, на стыках внутренних несущих перегородок, внешних стен;
  3. расположить по каждой внутренней, внешней стене необходимое число свай с учетом расстояния, не превышающего 2-3 метра в зависимости от материалов, из которых будет возводиться строение;
  4. остальное пространство заполнить винтовыми сваями с учетом расстояния в 2 или 3 метра;
  5. если будет возводиться печь необходимо учитывать, что она требует минимум 2-х свай;
  6. обозначить винтовые сваи под внешние углы балконов, террас, пристроек;
  7. подсчитать общее число винтовых свай.

Основные показатели при расчете количества свай

При расчете количества свай учитываются два базовых показателя:

  1. общая весовая нагрузка объекта строительства на фундамент;
  2. грузонесущая способность грунта на участке строительства и, соответственно, нагрузка на одну сваю.

Весовая нагрузка рассчитывается следующим образом:

Определяются:
вес всех используемых при строительстве объекта материалов, при этом во внимание берутся значения, которые будет иметь готовый объект;
нагрузка при эксплуатации объекта и снеговая нагрузка – рассчитываются согласно СНиП 2.01.07-85.

Вышеуказанные показатели веса и нагрузки суммируются, полученное значение умножается на 1,1-1,2 – коэффициент запаса.

Грузонесущая способность грунта – показатель, рассчитываемый в индивидуальном порядке на основе данных, полученных при геологическом исследовании участка строительства. Расчеты опираются на нормы СНиП 2.02.03-85. В ряде случаев допустимо не проводить исследование. Такой подход целесообразен при хорошей изученности, стабильности грунта и возможности применения показателя минимальной допустимой нагрузки на одну сваю заданного типоразмера и планируемой глубины залегания винта.

После вычисления общей весовой нагрузки и допустимой грузонесущей способности одной сваи первый показатель делится на второй. В результате получает минимально допустимое количество свай, которое, впрочем, зачастую увеличивается по соображениям повышения надежности конструкции.

Согласно строительным ГОСТам и Сводам Правил, шаг монтажа свай составляет 1,5-3 метра, при этом предусматривается установка свай не только по периметру, но и внутри него. Расположение свай относительно друг друга, а также их количество серьезно зависит от площади строения, а также нахождения зон повышенной нагрузки, которую, например, создает построенная в доме печь. Для таких зон количество свай желательно увеличивать. Расположение свай и их количество отражается на плане – схеме свайного поля.

Арматура, требования к ней и расчет

Под фундамент здания обычно берут металлические прутья, класс А III и выше.

Сечения:

  • холоднотянутый прут – не меньше трех миллиметров;
  • горячекатаный – не менее шести миллиметров.

Сталь должна относиться к классу 15 или выше. Обязательна обработка составами, препятствующими возникновению коррозии.

Возможно применение и арматуры из композитных материалов. Она проще в монтаже, более упругая, более жесткая и не такая пластичная. Преимуществом композита является неподверженность коррозирующим процессам, этот материал хорошо выдерживает вертикальную нагрузку и не образует мостиков холода.

Диаметр прутков и как рассчитать их количество?

Основа арматурного каркаса: вертикальные элементы – ребристые прутки с диаметром 1-1,2 см.

Горизонтальные связующие элементы изготавливаются из монтажной арматуры с сечением в 6-8 мм.

Они необходимы для соединения вертикальных в общую конструкцию.

Верхние концы вертикальных прутьев должны выступать из бетонной смеси на высоту в десять-двадцать сантиметров от уровня заливки. Они требуются для привязки ростверка.

Объем требующихся для процедуры прутьев определяют так: общее значение диаметра их в бетонном основании не должно превышать 0,25 процентов от диаметра столба-основания. Рекомендуемый вариант соотношения диаметров 1 к 25.

Визуально расчет выглядит так:

Бетонная смесь должна обходить арматурный каркас слоем не менее двадцати пяти миллиметров, что позволит защитить металл от коррозии.

Для столбов подойдет и пространственный каркас, в котором прутки между собой соединены вязальной проволокой. Положение фиксируется до начала бетонирования.

Чтобы получить каркас для столба в 20 см диаметром при глубине закладки фундамента в два метра, требуется четыре вертикальных прута. Сечение не менее 10 мм, лучше двенадцать. Шаг для перевязки 50 см, а значит, потребуется четыре места горизонтальных соединений.

Принцип расчета выглядит так:

  1. количество ребристых прутьев (длина) рассчитывается с учетом припуска в 200 мм, который необходим для проведения привязки ростверка. Получается, что на один столб надо (2+0,2)*4=8,8 метров прутка сечением 10-12 мм;
  2. для выполнения горизонтальных соединений количество гладкой арматуры рассчитывается перемножением 0,2*4*4=3,2 метра прутка диаметром 6-8 мм;
  3. чтобы посчитать объем проволоки для вязки каркаса, останется выполнить такое действие 0,3*4*4=4,8 метра.

Получив количество материала, требующегося на один столб, остается только перемножить это на общее число столбов.

Диаметр и длина винтовых свай

Диаметр и длина свайно-винтовых конструкций подбираются отдельно для каждого типа сооружения. Варианты применения винтовых свай:

  • Опоры диаметром 76 мм используют для фундаментов легких сооружений — беседок, террас, веранд, навесов.
  • Сваи с толщиной ствола 89 мм применяются при строительстве небольших гостевых домиков, бань, хозблоков.
  • Винтовые стержни диаметром 108 мм подойдут для постройки дачного дома из бруса.
  • На фундаменте из стержней диаметром 133 мм строят коттеджи из поризованного бетона — газоблока, пеноблока.
  • Усиленные винтовые конструкции диаметром 102 мм применяют в качестве опор свайно-ростверкового фундамента под кирпичные дома.

Для строительства дома на участке с устойчивым стабильным грунтом используют винтовые сваи длиной 2,5 м. Если на пятне застройки есть перепады по высоте, то длину стержней увеличивают. Максимальная длина свайных стержней 12 метров, при необходимости их удлиняют через сварные муфты.

Глубину ввинчивания опор определяют путем пробного или лидерного бурения. Лопасти свай должны пройти верхние слои почвы и зафиксироваться в плотных несущих пластах. Метод контрольного вкручивания состоит в следующем. На верхней части ствола каждого стержня имеются монтажные отверстия. В них заводят рычаг и закручивают опору, сочетая завинчивание с давящей нагрузкой. В процессе заглубления опоры постоянно контролируется ее вертикальность при помощи пузырькового строительного уровня. После того, как наконечник сваи погрузился ниже уровня промерзания почвы и резко увеличилось усилие затяжки работу прекращают.

Этим способом определяется глубина залегания плотных слоев и длина свай. В зависимости от сложности рельефа при расчете длины опор предусматривают запас от 0,2 до 0,5. После монтажа всех элементов, формирующих свайное поле, стержни выравнивают в один уровень при помощи лазерного уровня, излишки обрезают болгаркой.

Необходимость армирования

Внешне твердый и прочный бетонный столб, оказавшись в фундаментной конструкции и подвергнутый нагрузочным воздействиям, превращается в колкую субстанцию.

Имея огромный запас прочности, бетонный столб разрушается за долго до набора предельной прочности, и причиной этого является неравномерное распределение нагрузки от сооружения.

Чтобы избежать этого, рекомендуется выполнять армирование столбов фундамента. Данная мера позволит:

  • максимальную часть особо важных напряжений переносить в глубокие бетонные слои и распределять их главным образом не на камень, а на арматурный каркас;
  • металлические арматурные прутья отлично соединяют основные элементы фундаментной конструкции – опорные столбы и ростверок;
  • эксплуатационный период армированных столбов увеличивается в разы по сравнению с простыми бетонными опорами.

5.2 Определение количества свай и размещение их в ростверке

Необходимое
количество свай в грунте определяется
по формуле


(13)

Определим
расчетное расстояние между осями свай
на 1 п.м. стены:

Принимаем
однорядную систему расположения свай.

Определяем
размеры ростверка в плане:

-расстояние
от края ростверка до боковой грани сваи
;

-ширина
ростверка :


где
— расстояние между рядами свай;


расстояние от края ростверка до боковой
грани свай;


число рядов

Тогда
b=0,3+2*0,11=0,52м

Принимаем
ширину ростверка b=0,52м
и высоту h=0,5м.

Рисунок
5 — Схема конструирования ростверка

Определяем
фактическую нагрузку, приходящуюся на
однусваю, которая должна быть меньше
допустимой:

(14)

Условие
выполняется, фундамент запроектирован
правильно.

Конструктивные особенности свайного фундамента

Винтовой фундамент состоит из двух конструктивных элементов — свайных опор и их обвязки (ростверка). Опоры передают нагрузку, исходящую от здания, на грунт, минуя поверхностные низкоплотные пласты земли и перенося вес дома на глубинную, уплотненную почву.

В зависимости от схемы размещения свай, выделяют два типа винтовых фундаментов:

  • с последовательным расположением опор — сваи размещаются на равноудаленном расстоянии друг от друга по периметру внешних и внутренних стен дома;
  • с расположением в виде свайного поля — опоры равномерно распределены по всей площади здания.

Исходя из схемы расположения свай выбирается способ их обвязки. Для последовательных свай применяются ленточные ростверки, тогда как сваное поле обвязывается сплошным, плитным ростверком.

Ростверк винтового фундамента выполняет три функции:

  • равномерно распределяет между опорами вес дома;
  • выступает в качестве опорной поверхности для цокольного перекрытия;
  • увеличивает устойчивость свай в грунте.

Устойчивость опор достигается за счет того, что сваи соединяются между собой и начинают работать как единая конструкция, что дает повышенное сопротивление к опрокидывающим нагрузкам и защищает опору от крена, который может произойти с одиночной сваей.

В зависимости от материала, ростверк на сваях может быть монолитным (железобетон) из бруса либо швеллера. Для строительстве тяжелых домов предпочтительна железобетонная обвязка винтового фундамента, для легких домов — брусовая.

Типы используемых свай

Используемые в фундаментном строительстве винтовые сваи отличаются типом лопастей и диаметром:

  • сваи ∅ 57 мм — применяются для возведения легких заборов и навесов;
  • сваи ∅ 57 мм — пригодны для возведения легких вспомогательных помещений (сараев, беседок) и тяжелых заборов;
  • сваи ∅ 89 мм — используются для каркасных домов, гаражей и одноэтажных построек из легких материалов;
  • сваи ∅ 108 мм — имеют высокую несущую способность по материалу (до 6 тонн), позволяют строить дома высотой 1-2 этажа из бруса, сруба, пенобетона.

В малоэтажном строительстве применяются широколопастные сваи, соотношение диаметра ствола и лопастей в которых превышает 1,5.

Как сделать столбчатый фундамент своими руками: пошаговая инструкция

Перед началом всех работ необходимо изучить грунтовое основание, определить уровень грунтовых вод, а также произвести качественный расчет необходимого количества опорных столбов, варианта их исполнения. Только потом можно приступать к подготовке строительной площадки.

Видео о том, как можно сделать столбчатый фундамент своими руками:

Расчет

Для того, чтобы грамотно выполнить расчет, можно нанять для этого квалифицированных специалистов, либо воспользоваться специальными компьютерными программами.

Благодаря точному расчету можно получить необходимое количество столбов, их площадь сечения, а также необходимый показатель заглубления. Количество опор расчет обычно выдает минимальное: если выполнить их с меньшим шагом, то это позволит возвести более надежное строение.

На фото чертежи столбчатого фундамента с размерами:

Земляные работы

Вначале необходимо снять с участка плодородный слой грунта. В среднем, этот размер составляет 20 сантиметров. Далее необходимо обозначить места установки опорных столбов. При помощи бура выполняются скважины определенной глубины и размера. Для более качественного обустройства разметки будущей системы можно воспользоваться геодезическим теодолитом.

Устройство подушки под столбы

Под подушкой подразумевают слой песка, толщина которого обычно не более 30 сантиметров. После засыпки, песок необходимо утрамбовать. В большинстве случаев, для выполнения данного этапа работ используют бревно небольшого сечения.

Песок отводит лишнюю грунтовую влагу от опорных столбов. Далее выполняется бетонный слой, толщиной от 10 до 30 сантиметров. Он служит опорой для будущей конструкции.

Выполнение опалубки

При выполнении опалубки стоит учитывать вид грунта. Если на строительной площадке глинистая почва, то возведение опалубки может не потребоваться, так как глина не обваливается. Если же грунт представляет собой песок, то данная конструкция выполняется из деревянных досок, либо аналогичных плоских материалов. При первом варианте обязательной технологией будет служить укладка рубероида в скважины. Он будет выполнять не только роль стенок, но и гидроизоляции.

Если в качестве материала для опалубки выбирается натуральная древесина, то специалисты рекомендуют тщательно смочить ее водой. В противном случае она будет впитывать влагу из раствора бетона, тем самым ухудшая его качественные показатели.

Армирование

Армирование опорных столбов проводится обязательно, так как именно оно сдерживает нагрузки. Железная арматура нарезается на необходимого размера куски и связывается между собой в каркас

В данном случае очень важно сложить отдельные изделия относительно друг друга. Каркас опускается в скважину строго посередине

Только после этого можно заливать бетон.

Заливка бетона

При заливке бетонного раствора необходимо простукивать опалубку, чтобы удалить лишний воздух и выполнить качественные столбы. Бетонный раствор при стандартном замешивании должен состоять из одной части цемента, двух частей песка, а также трех частей щебня. Столбы необходимо не трогать 28 дней. Только после этого они будут иметь необходимую прочность.

Гидроизоляция

Так как отдельным элементам угрожает почвенная и атмосферная влага, очень важно выполнить качественную гидроизоляцию столбов. От поверхностной влаги конструкцию обычно защищает отмостка

Также можно использовать влагозащитный бетон.

Поверх подушки обязательно следует положить гидроизоляционный слой, который может быть выполнен из рубероида. Стенки ямы также следует защитить гидроизоляционным материалом.

Утепление

Утепление снаружи более распространено, так как оно сохраняет показатели прочности бетона, не пропускает холод внутрь дома, а также является дополнительной зашитой от влаги. Данный этап работ можно выполнить с помощью пенопласта, пеноплекса, а также экструдированного пенополистирола. Слой утеплителя необходимо выполнить на основании и вокруг самих опор.

Расчет

Расчетное сопротивление грунта основания

Данные для расчета взяты из СП 22.13330.2011 (Актуализированная редакция СНиП 2.02.01-83*).

, где

коэффициент условий работы, принимаемые по таблице 5.4;

коэффициент условий работы, принимаемые по таблице 5.4;

коэффициент, принимаемый равным единице, если прочностные характеристики грунта ( и ) определены непосредственными испытаниями, и k = 1,1, если они приняты по таблицам приложения Б;

ширина подошвы фундамента, м;

осредненное (см. 5.6.10) расчетное значение удельного веса грунтов,
залегающих ниже подошвы фундамента, кН/м3;

осредненное (см. 5.6.10) расчетное значение удельного веса грунтов,
залегающих выше подошвы фундамента, кН/м3;

расчетное значение удельного сцепления грунта, залегающего
непосредственно под подошвой фундамента (см. 5.6.10), кПа;

угол внутреннего трения грунта основания;

коэффициенты, принимаемые по таблице 5.5;

коэффициенты, принимаемые по таблице 5.5;

коэффициенты, принимаемые по таблице 5.5;

Коэффициент, принимаемый равным единице при b < 10 м; kz= z0 ÷ b+ 0,2 при b ≥ 10 м (здесь z0 = 8 м)

глубина заложения фундаментов, м, бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле (5.8);

глубина подвала, расстояние от уровня планировки до пола подвала, м;

Более подробную информацию можно посмотреть: Расчет сопротивления грунта основания

Данные для расчета взяты из приложения В СП 22.13330.2011 (СНиП 2.02.01-83*).

Формула при d ≤ 2:

, где

расчетное сопротивление грунта основания (при d=2м и b=1м), кПа;

коэффициент, принимаемый для оснований, сложенных крупнообломочными и
песчаными грунтами, кроме пылеватых песков, — k1 = 0,125, пылеватыми песками, супесями, суглинками и глинами — k1 = 0,05;

ширина проектируемого фундамента, м;

глубина заложения проектируемого фундамента, м;

ширина фундамента равная 1м (Ro);

глубина заложения фундамента равная 2м (Ro).

Формула при d>2:

, где

расчетное сопротивление грунта основания (при d=2м и b=1м), кПа;

коэффициент, принимаемый для оснований, сложенных крупнообломочными и
песчаными грунтами, кроме пылеватых песков, — k1 = 0,125, пылеватыми песками, супесями, суглинками и глинами — k1 = 0,05;

коэффициент, принимаемый для оснований, сложенных крупнообломочными и
песчаными грунтами, — k2 = 0,25, супесями и суглинками — k2 = 0,2 и глинами — k2 = 0,15;

ширина проектируемого фундамента, м;

глубина заложения проектируемого фундамента, м;

ширина фундамента равная 1м (Ro);

глубина заложения фундамента равная 2м (Ro);

расчетное значение удельного веса грунта, расположенного выше подошвы фундамента, кН/м3.

Сбор нагрузок

Расчет количества свай для фундамента начинается с вычисления нагрузки, которую оказывают на опоры и почву элементы здания — стены, перекрытия, стропильная система, кровля. В расчет принимается собственный вес фундамента, ветровая и снеговая нагрузка, силы морозного пучения. Для расчета веса каркасного дома можно использовать данные из таблицы ниже.

Таблица 1. Вес материалов и конструкций каркасного дома.

Конструктивные элементы, кг/м 2

Стены, утепленные минватой толщиной 100-150 мм

Межкомнатные перегородки (гипсокартон, брус)

Перегородки со звукоизоляцией (гипсокартон, брус, утеплитель)

Чердачное перекрытие по балкам, с обрешеткой и утеплителем

Кровельный пирог (кровельные материалы, обрешетка, гидроизоляция, контробрешетка, утеплитель, стропила), кг/м 2

с керамической черепицей

с битумной черепицей

Вес одной двухлопастной сваи длиной 2,5 м, кг

Временные нагрузки, кг/м 2

полезная (мебель, бытовая техника, сантехника)

снеговая и ветровая

Из таблицы СНиП «Нагрузки и воздействия» с учетом климатического района

Снеговая и ветровая нагрузки рассчитываются с учетом типа крыши, угла наклона скатов. Если угол превышает значение 60 градусов, снеговая нагрузка уменьшается, но увеличивается ветровая. Приведенные в таблице значения являются справочными, для получения расчетных показателей цифры умножают на коэффициент надежности для каждого вида конструкций.

Таблица 2. Коэффициент надежности.

Теплоизоляция, засыпка, бетонная стяжка

изготовленная на стройплощадке

Расчет одиночной сваи в составе фундамента по первой группе предельных состояний (по несущей способности грунта основания сваи)

Расчет предусматривает проверку выполнения условия I предельного
состояния:

F —
расчетная нагрузка передаваемая на сваи т.е. фактическая нагрузка:

 —
расчетная несущая способность грунта основания одиночной сваи (несущая
способность сваи по грунту);

 — расчетная
нагрузка, допускаемая на сваю.

 —
коэффициент надежности.

Вычисление
фактической нагрузки F, передаваемой на сваю.

Вес
ростверка QP = 1,6·1·0,5·24 = 19,2кН;

Вес
надростверковой конструкции Qнк (одного пог. м стены подвала) из 5 блоков
ФБС24.4.6: Qнк = (0,4·0,6·1·4) ·22 = 26,4 кН;

Общий
вес Q ростверка и надростверковой конструкции:

=
QP + Qнк = 19,2 + 26,4 = 45,6 кН;

При
вычислении QP и Qнк приняты удельные веса:

Пригрузка
внутреннего обреза ростверка бетонным полом подвала GП:П = 0,1·0,2·1·22 = 0,44
кН.

Общий
вес G пригрузки ростверка грунтом и полом подвала:= GП = 0,44 = 0,44 кН.

Расчетная
допускаемая нагрузка на сваю

Условие
F < Pсв выполняется.

Принятые
размеры свайного фундамента будут считаться окончательными при удовлетворении
условия расчета по второму предельному состоянию — по деформациям.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector